If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-4.9t^2+12t+29=0
a = -4.9; b = 12; c = +29;
Δ = b2-4ac
Δ = 122-4·(-4.9)·29
Δ = 712.4
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(12)-\sqrt{712.4}}{2*-4.9}=\frac{-12-\sqrt{712.4}}{-9.8} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(12)+\sqrt{712.4}}{2*-4.9}=\frac{-12+\sqrt{712.4}}{-9.8} $
| f=3.3=17.4 | | 10=x=7 | | Y=x6+100 | | 2(x+44)-8=2 | | -x2+18x-88=0 | | 6x(2x-4)=7x(9x) | | 0.11x+16.25=17-0.08x | | 0.11x+16.25=0.08x-17 | | 0.79x+15=1.29x | | X2+29x+108=0 | | 180=2x+10+x+10+2x+10 | | x-(x*0.5)+7=x-9 | | 0.08x+13.28=0.14x+13.78 | | x-(x*0.5)=x-9 | | 13.84+0.06x=14.59+0.11x | | 0.5=0.1/x | | 12.55+0.08x=13.05+0.11x | | 23.25x+26=17.75x=59 | | 30=12v-6v | | (x+7=3x5 | | 21x^2+69x+20=0 | | 9x+83-3x=409-20+3x-8-5 | | 7=1/x-4 | | (3x+5)=(3x+9) | | 16(y+3)=16 | | 1.1^x=40 | | 3^x=387420589 | | b+0.2=2.5-0. | | 3(x-2)+10=2(2x+2)=+2 | | 20+10x=9x | | 20+10x=-9x | | -0.006x^2+1.5x=0 |